Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
JCO Clin Cancer Inform ; 5: 668-678, 2021 06.
Article in English | MEDLINE | ID: covidwho-1264197

ABSTRACT

Chimeric antigen receptor T-cell (CAR-T) therapy is a paradigm-shifting immunotherapy modality in oncology; however, unique toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome limit its ability to be implemented more widely in the outpatient setting or at smaller-volume centers. Three operational challenges with CAR-T therapy include the following: (1) the logistics of toxicity monitoring, ie, with frequent vital sign checks and neurologic assessments; (2) the specialized knowledge required for toxicity management, particularly with regard to CRS and immune effector cell-associated neurotoxicity syndrome; and (3) the need for high-quality symptomatic and supportive care during this intensive period. In this review, we explore potential niches for digital innovations that can improve the implementation of CAR-T therapy in each of these domains. These tools include patient-facing technologies and provider-facing platforms: for example, wearable devices and mobile health apps to screen for fevers and encephalopathy, electronic patient-reported outcome assessments-based workflows to assist with symptom management, machine learning algorithms to predict emerging CRS in real time, clinical decision support systems to assist with toxicity management, and digital coaching to help maintain wellness. Televisits, which have grown in prominence since the novel coronavirus pandemic, will continue to play a key role in the monitoring and management of CAR-T-related toxicities as well. Limitations of these strategies include the need to ensure care equity and stakeholder buy-in, both operationally and financially. Nevertheless, once developed and validated, the next-generation implementation of CAR-T therapy using these digital tools may improve both its safety and accessibility.


Subject(s)
Cytokine Release Syndrome/etiology , Immunotherapy, Adoptive/adverse effects , Telemedicine/methods , COVID-19 , Cell- and Tissue-Based Therapy/adverse effects , Humans , Immunotherapy, Adoptive/methods , Machine Learning , Neurotoxicity Syndromes/etiology , Precision Medicine , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen
SELECTION OF CITATIONS
SEARCH DETAIL